Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis.
نویسندگان
چکیده
A noteworthy aspect of melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) as a cancer therapeutic is its ability to selectively kill cancer cells without harming normal cells. Intracellular MDA-7/IL-24 protein, generated from an adenovirus expressing mda-7/IL-24 (Ad.mda-7), induces cancer-specific apoptosis by inducing an endoplasmic reticulum (ER) stress response. Secreted MDA-7/IL-24 protein, generated from cells infected with Ad.mda-7, induces growth inhibition and apoptosis in surrounding noninfected cancer cells but not in normal cells, thus exerting an anti-tumor "bystander" effect. The present studies reveal a provocative finding that recombinant MDA-7/IL-24 protein can robustly induce expression of endogenous mda-7/IL-24, which generates the signaling events necessary for bystander killing. To evaluate the mechanism underlying this positive autocrine feedback loop, we show that MDA-7/IL-24 protein induces stabilization of its own mRNA without activating its promoter. Furthermore, this posttranscriptional effect depends on de novo protein synthesis. As a consequence of this autocrine feedback loop MDA-7/IL-24 protein induces sustained ER stress as evidenced by expression of ER stress markers (BiP/GRP78, GRP94, GADD153, and phospho-eIF2alpha) and reactive oxygen species production, indicating that both intracellular and secreted proteins activate similar signaling pathways to induce apoptosis. Thus, our results clarify the molecular mechanism by which secreted MDA-7/IL-24 protein (generated from Ad.mda-7-infected cells) exerts cancer-specific killing.
منابع مشابه
Novel mechanism of MDA-7/IL-24 cancer-specific apoptosis through SARI induction.
Subtraction hybridization combined with induction of cancer cell terminal differentiation in human melanoma cells identified melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) and SARI (suppressor of AP-1, induced by IFN) that display potent antitumor activity. These genes are not constitutively expressed in cancer cells and forced expression of mda-7/IL-24 (Ad.mda-7) or SA...
متن کاملReversing Translational Suppression and Induction of Toxicity in Pancreatic Cancer Cells Using a Chemoprevention Gene Therapy Approach s
Pancreatic cancer is an aggressive disease with limited therapeutic options. Melanoma differentiation–associated gene-7/ interleukin-24 (mda-7/IL-24), a potent antitumor cytokine, shows cancer-specific toxicity in a vast array of human cancers, inducing endoplasmic reticulum stress and apoptosis, toxic autophagy, an antitumor immune response, an antiangiogenic effect, and a significant “bystand...
متن کاملReversing translational suppression and induction of toxicity in pancreatic cancer cells using a chemoprevention gene therapy approach.
Pancreatic cancer is an aggressive disease with limited therapeutic options. Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a potent antitumor cytokine, shows cancer-specific toxicity in a vast array of human cancers, inducing endoplasmic reticulum stress and apoptosis, toxic autophagy, an antitumor immune response, an antiangiogenic effect, and a significant "bystande...
متن کاملAnti-inflammatory Drug Associated Gene-7/Interleukin-24 Mediates Nonsteroidal A Novel Pathway Involving Melanoma Differentiation
Numerous studies show that nonsteroidal anti-inflammatory drugs (NSAIDs) are effective in chemoprevention or treatment of cancer. Nevertheless, the mechanisms underlying these antineoplastic effects remain poorly understood. Here, we report that induction of the cancer-specific proapoptotic cytokine melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24) by several NSAIDs is an ...
متن کاملMechanism by which Mcl-1 regulates cancer-specific apoptosis triggered by mda-7/IL-24, an IL-10-related cytokine.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a cytokine belonging to the IL-10 family, selectively induces apoptosis in cancer cells without harming normal cells by promoting an endoplasmic reticulum (ER) stress response. The precise molecular mechanism by which the ER stress response culminates in cell death requires further clarification. The present study shows th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 28 شماره
صفحات -
تاریخ انتشار 2008